Latest Maths NCERT Books Solution | ||||||
---|---|---|---|---|---|---|
6th | 7th | 8th | 9th | 10th | 11th | 12th |
Content On This Page | ||
---|---|---|
Example 1 to 4 (Before Exercise 7.1) | Exercise 7.1 | Miscellaneous Exercise on Chapter 7 |
Chapter 7 Binomial Theorem
This solutions page is dedicated to providing comprehensive support for Chapter 7: Binomial Theorem, an intriguing and powerful chapter within the Class 11 Mathematics curriculum, as presented in the Latest NCERT (2024-25) textbook. This chapter focuses primarily on developing a systematic method for expanding binomial expressions (expressions with two terms) raised to any positive integral power. Mastering this theorem provides a crucial algebraic tool with applications in various fields, including probability, statistics, and calculus. The solutions herein are fully aligned with the current rationalized syllabus and aim to clarify the concepts and techniques involved.
The cornerstone of this chapter is the Binomial Theorem itself. The solutions clearly state and explain this fundamental theorem for any positive integer $n$. The theorem provides a formula for the expansion of $(a+b)^n$ as a sum of terms: $$\qquad (a+b)^n = \sum\limits_{r=0}^{n} \binom{n}{r} a^{n-r} b^r$$ Or, written out explicitly: $$\qquad (a+b)^n = \binom{n}{0}a^n b^0 + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + \binom{n}{n}a^0 b^n$$ The solutions carefully explain the meaning of the terms $\binom{n}{r}$ (often written as $^nC_r$), known as the binomial coefficients, which represent the number of ways to choose $r$ items from a set of $n$ without regard to order ($\binom{n}{r} = \frac{n!}{r!(n-r)!}$). The connection between these coefficients and the pattern observed in Pascal's triangle (especially for smaller values of $n$) is also highlighted, providing an intuitive way to visualize the coefficients.
A primary application demonstrated extensively in the solutions is the direct expansion of binomial expressions. Students will find detailed, step-by-step procedures for expanding specific binomials, such as $(x + y)^4$, $(2x - 3y)^5$, or even more complex forms like $(x^2 + \frac{1}{x})^6$. These solutions emphasize the careful application of the theorem, ensuring accurate calculation of each binomial coefficient $\binom{n}{r}$ and the correct powers of $a$ and $b$ (remembering to handle negative signs or fractional terms appropriately), followed by the simplification of each resulting term in the expansion.
Beyond full expansion, a significant focus is placed on finding specific terms within a binomial expansion without needing to generate the entire series. This relies heavily on understanding and applying the formula for the general term, which is the $(r+1)^{th}$ term in the expansion of $(a+b)^n$: $\qquad \mathbf{T_{r+1} = \binom{n}{r} a^{n-r} b^r}$. The solutions expertly guide students on how to use this formula effectively. This includes determining the correct value of $r$ needed to find:
- A term at a specific position (e.g., the $4^{th}$ term, which corresponds to $r=3$).
- The term independent of $x$ (the constant term), achieved by finding the value of $r$ that makes the power of $x$ equal to zero.
- The coefficient of a specific power of a variable, such as the coefficient of $x^7$ in an expansion.
Furthermore, the solutions systematically address problems involving finding the middle term(s) in the expansion of $(a+b)^n$. The approach depends on whether the exponent $n$ is even or odd:
- If $n$ is even, there is one middle term, which is the $(\frac{n}{2} + 1)^{th}$ term (found using $r = \frac{n}{2}$).
- If $n$ is odd, there are two middle terms, which are the $(\frac{n+1}{2})^{th}$ and $(\frac{n+1}{2} + 1)^{th}$ terms (found using $r = \frac{n-1}{2}$ and $r = \frac{n+1}{2}$).
Applications of the Binomial Theorem, such as using the first few terms of an expansion to approximate values like $(1.01)^5 = (1 + 0.01)^5$ or $(0.99)^4 = (1 - 0.01)^4$, might also be illustrated in the solutions, showcasing its practical utility. Simple proofs related to binomial coefficients or identities derived from the theorem could also be presented. By thoroughly studying these detailed solutions, students can gain mastery over the statement and application of the Binomial Theorem, become proficient in expanding binomials accurately, develop efficient techniques for finding specific terms and coefficients, and appreciate its role in approximation and combinatorial proofs.
Example 1 to 4 (Before Exercise 7.1)
Example 1: Expand $\left( x^{2} +\frac{3}{x}\right)^{4}\;,\; x \neq 0$
Answer:
Solution:
We need to expand the expression $\left( x^{2} +\frac{3}{x}\right)^{4}$. This is in the form $(a+b)^n$, where $a = x^2$, $b = \frac{3}{x}$, and $n=4$.
We can use the Binomial Theorem for expansion. The Binomial Theorem states that for any positive integer $n$, the expansion of $(a+b)^n$ is given by:
$(a+b)^n = \sum\limits_{r=0}^{n} \binom{n}{r} a^{n-r} b^{r} = \binom{n}{0}a^n b^0 + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n}a^0 b^n$
where $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ are the binomial coefficients.
For the given expression, $a = x^2$, $b = \frac{3}{x}$, and $n = 4$. We need to calculate the terms for $r=0, 1, 2, 3, 4$ and sum them up.
Let's calculate each term:
Term for $r=0$:
$\binom{4}{0}(x^2)^{4-0}\left(\frac{3}{x}\right)^0 = 1 \cdot (x^2)^4 \cdot 1 = x^8$
Term for $r=1$:
$\binom{4}{1}(x^2)^{4-1}\left(\frac{3}{x}\right)^1 = 4 \cdot (x^2)^3 \cdot \frac{3}{x} = 4 \cdot x^6 \cdot \frac{3}{x} = 12x^{6-1} = 12x^5$
Term for $r=2$:
$\binom{4}{2}(x^2)^{4-2}\left(\frac{3}{x}\right)^2 = 6 \cdot (x^2)^2 \cdot \left(\frac{3^2}{x^2}\right) = 6 \cdot x^4 \cdot \frac{9}{x^2} = 54x^{4-2} = 54x^2$
Term for $r=3$:
$\binom{4}{3}(x^2)^{4-3}\left(\frac{3}{x}\right)^3 = 4 \cdot (x^2)^1 \cdot \left(\frac{3^3}{x^3}\right) = 4 \cdot x^2 \cdot \frac{27}{x^3} = 108x^{2-3} = 108x^{-1} = \frac{108}{x}$
Term for $r=4$:
$\binom{4}{4}(x^2)^{4-4}\left(\frac{3}{x}\right)^4 = 1 \cdot (x^2)^0 \cdot \left(\frac{3^4}{x^4}\right) = 1 \cdot 1 \cdot \frac{81}{x^4} = \frac{81}{x^4}$
Now, we sum all the terms to get the complete expansion:
$\left( x^{2} +\frac{3}{x}\right)^{4} = (\text{Term for } r=0) + (\text{Term for } r=1) + (\text{Term for } r=2) + (\text{Term for } r=3) + (\text{Term for } r=4)$
$\left( x^{2} +\frac{3}{x}\right)^{4} = x^8 + 12x^5 + 54x^2 + \frac{108}{x} + \frac{81}{x^4}$
The final expansion is:
$\left( x^{2} +\frac{3}{x}\right)^{4} = x^8 + 12x^5 + 54x^2 + \frac{108}{x} + \frac{81}{x^4}$
Example 2: Compute (98)5 .
Answer:
Given:
We need to compute the value of $(98)^5$.
To Compute:
$(98)^5$
Solution:
We can rewrite $98$ as $100 - 2$. So, $(98)^5$ can be written as $(100 - 2)^5$.
This expression is in the form $(a-b)^n$, where $a = 100$, $b = 2$, and $n = 5$. We can use the Binomial Theorem to expand this expression.
The Binomial Theorem for $(a-b)^n$ is given by:
$(a-b)^n = \binom{n}{0}a^n - \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 - \binom{n}{3}a^{n-3}b^3 + \dots + (-1)^n \binom{n}{n}b^n$
Using this formula for $(100 - 2)^5$ ($n=5$, $a=100$, $b=2$):
$(100 - 2)^5 = \binom{5}{0}(100)^5(-2)^0 + \binom{5}{1}(100)^4(-2)^1 + \binom{5}{2}(100)^3(-2)^2 + \binom{5}{3}(100)^2(-2)^3 + \binom{5}{4}(100)^1(-2)^4 + \binom{5}{5}(100)^0(-2)^5$
Let's calculate each term:
Term 1 (r=0):
$\binom{5}{0}(100)^5(-2)^0 = 1 \times (10000000000) \times 1 = 10,00,00,00,000$
Term 2 (r=1):
$\binom{5}{1}(100)^4(-2)^1 = 5 \times (100000000) \times (-2) = 5 \times (-200000000) = -1,00,00,00,000$
Term 3 (r=2):
$\binom{5}{2}(100)^3(-2)^2 = 10 \times (1000000) \times 4 = 10 \times (4000000) = 4,00,00,000$
Term 4 (r=3):
$\binom{5}{3}(100)^2(-2)^3 = 10 \times (10000) \times (-8) = 10 \times (-80000) = -8,00,000$
Term 5 (r=4):
$\binom{5}{4}(100)^1(-2)^4 = 5 \times (100) \times 16 = 5 \times 1600 = 8,000$
Term 6 (r=5):
$\binom{5}{5}(100)^0(-2)^5 = 1 \times 1 \times (-32) = -32$
Now, we add all the terms together:
$(98)^5 = 10,00,00,00,000 + (-1,00,00,00,000) + 4,00,00,000 + (-8,00,000) + 8,000 + (-32)$
$(98)^5 = 10,00,00,00,000 - 1,00,00,00,000 + 4,00,00,000 - 8,00,000 + 8,000 - 32$
$(98)^5 = 9,00,00,00,000 + 4,00,00,000 - 8,00,000 + 8,000 - 32$
$(98)^5 = 9,04,00,00,000 - 8,00,000 + 8,000 - 32$
$(98)^5 = 9,03,92,00,000 + 8,000 - 32$
$(98)^5 = 9,03,92,08,000 - 32$
$(98)^5 = 9,03,92,07,968$
The value of $(98)^5$ is $9,03,92,07,968$.
Example 3: Which is larger (1.01)1000000 or 10,000?
Answer:
Solution:
We are asked to compare $(1.01)^{1000000}$ and $10,000$.
Let's consider the expression $(1.01)^{1000000}$. We can write $1.01$ as $1 + 0.01$. So, we need to evaluate $(1 + 0.01)^{1000000}$.
This is in the form $(1+x)^n$, where $x = 0.01$ and $n = 1000000$. We can use the Binomial Theorem to expand this expression.
The Binomial Theorem for $(1+x)^n$, where $n$ is a positive integer, is given by:
$(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + \binom{n}{n}x^n$
Substituting $n = 1000000$ and $x = 0.01$, we get:
$(1 + 0.01)^{1000000} = \binom{1000000}{0} + \binom{1000000}{1}(0.01) + \binom{1000000}{2}(0.01)^2 + \binom{1000000}{3}(0.01)^3 + \dots$
Let's calculate the first few terms of the expansion:
The first term is $\binom{1000000}{0} = 1$.
The second term is $\binom{1000000}{1}(0.01) = 1000000 \cdot (0.01) = 1000000 \cdot \frac{1}{100} = 10000$.
The third term is $\binom{1000000}{2}(0.01)^2 = \frac{1000000 \cdot (1000000-1)}{2 \cdot 1} (0.0001) = \frac{1000000 \cdot 999999}{2} \cdot \frac{1}{10000}$.
Simplifying the third term: $\frac{1000000}{10000} = 100$. So the third term is $\frac{100 \cdot 999999}{2} = 50 \cdot 999999 = 49999950$.
So, the expansion begins as:
$(1.01)^{1000000} = 1 + 10000 + 49999950 + (\text{subsequent terms})$
Since $n=1000000$ is a positive integer and $x=0.01$ is positive, all the terms $\binom{n}{r}x^r$ in the expansion are positive.
Therefore, $(1.01)^{1000000} = 1 + 10000 + (\text{sum of positive terms})$.
This means $(1.01)^{1000000} = 10001 + (\text{sum of positive terms})$.
Since the sum of the remaining terms is positive, we have:
$(1.01)^{1000000} > 10001$
We are comparing $(1.01)^{1000000}$ with $10000$.
Since $10001 > 10000$, and $(1.01)^{1000000} > 10001$, by transitivity, we can conclude that $(1.01)^{1000000}$ is larger than $10000$.
Thus, $(1.01)^{1000000} > 10000$.
Conclusion: $(1.01)^{1000000}$ is larger than $10,000$.
Example 4: Using binomial theorem, prove that 6n – 5n always leaves remainder 1 when divided by 25.
Answer:
Given:
The expression $6^n - 5n$, where $n$ is a non-negative integer.
To Prove:
That $6^n - 5n$ always leaves a remainder of $1$ when divided by $25$.
This means we need to show that $6^n - 5n = 25k + 1$ for some integer $k$, for all non-negative integers $n$.
Proof:
We will use the Binomial Theorem to expand $6^n$. We can write $6$ as $1+5$.
$6^n = (1+5)^n$
Using the Binomial Theorem for $(a+b)^n$, with $a=1$ and $b=5$:
$(1+5)^n = \binom{n}{0}1^n 5^0 + \binom{n}{1}1^{n-1} 5^1 + \binom{n}{2}1^{n-2} 5^2 + \binom{n}{3}1^{n-3} 5^3 + \dots + \binom{n}{n}1^0 5^n$
(Binomial Expansion)
Simplify the terms, knowing that $1^k = 1$ for any $k$ and $5^0=1$:
$(1+5)^n = \binom{n}{0} + \binom{n}{1}5 + \binom{n}{2}5^2 + \binom{n}{3}5^3 + \dots + \binom{n}{n}5^n$
We know that $\binom{n}{0} = 1$ and $\binom{n}{1} = n$. Substitute these values:
$6^n = 1 + n \cdot 5 + \binom{n}{2}5^2 + \binom{n}{3}5^3 + \dots + \binom{n}{n}5^n$
$6^n = 1 + 5n + \binom{n}{2}5^2 + \binom{n}{3}5^3 + \dots + \binom{n}{n}5^n$
... (i)
Now, consider the expression $6^n - 5n$. Subtract $5n$ from both sides of equation (i):
$6^n - 5n = (1 + 5n + \binom{n}{2}5^2 + \binom{n}{3}5^3 + \dots + \binom{n}{n}5^n) - 5n$
$6^n - 5n = 1 + (5n - 5n) + \binom{n}{2}5^2 + \binom{n}{3}5^3 + \dots + \binom{n}{n}5^n$
$6^n - 5n = 1 + \binom{n}{2}5^2 + \binom{n}{3}5^3 + \dots + \binom{n}{n}5^n$
... (ii)
Consider the sum of terms $\sum\limits_{r=2}^{n} \binom{n}{r}5^r = \binom{n}{2}5^2 + \binom{n}{3}5^3 + \dots + \binom{n}{n}5^n$. We need to show that this sum is always divisible by $25$ for any non-negative integer $n$.
Case 1: $n = 0$
From equation (ii), $6^0 - 5(0) = 1 + \sum\limits_{r=2}^{0} \binom{0}{r}5^r$. The sum $\sum\limits_{r=2}^{0}$ is an empty sum, which is equal to $0$.
$6^0 - 5(0) = 1 + 0 = 1$.
$1$ divided by $25$ leaves a remainder of $1$.
Case 2: $n = 1$
From equation (ii), $6^1 - 5(1) = 1 + \sum\limits_{r=2}^{1} \binom{1}{r}5^r$. The sum $\sum\limits_{r=2}^{1}$ is an empty sum, which is equal to $0$.
$6^1 - 5(1) = 1 + 0 = 1$.
$1$ divided by $25$ leaves a remainder of $1$.
Case 3: $n \ge 2$
In this case, the sum $\sum\limits_{r=2}^{n} \binom{n}{r}5^r$ has terms.
The sum is $\binom{n}{2}5^2 + \binom{n}{3}5^3 + \dots + \binom{n}{n}5^n$.
Every term $\binom{n}{r}5^r$ in this sum (for $r \ge 2$) has a factor of $5^r$. Since $r \ge 2$, $5^r$ is divisible by $5^2 = 25$.
So, we can write each term as $\binom{n}{r}5^r = \binom{n}{r} 5^{r-2} \cdot 5^2 = 25 \cdot \binom{n}{r} 5^{r-2}$.
Therefore, the sum is:
$\sum\limits_{r=2}^{n} \binom{n}{r}5^r = 25 \cdot \binom{n}{2}5^0 + 25 \cdot \binom{n}{3}5^1 + \dots + 25 \cdot \binom{n}{n}5^{n-2}$
Factor out $25$:
$\sum\limits_{r=2}^{n} \binom{n}{r}5^r = 25 \left( \binom{n}{2} + \binom{n}{3}5 + \dots + \binom{n}{n}5^{n-2} \right)$
... (iii)
Let $K = \binom{n}{2} + \binom{n}{3}5 + \dots + \binom{n}{n}5^{n-2} = \sum\limits_{r=2}^{n} \binom{n}{r}5^{r-2}$.
For $n \ge 2$, the binomial coefficients $\binom{n}{r}$ are integers for $r \ge 2$. The powers of $5$ ($5^{r-2}$ for $r \ge 2$, i.e., $5^0, 5^1, \dots$) are also integers.
The sum and product of integers are integers. Therefore, $K$ is an integer for $n \ge 2$.
From (iii), $\sum\limits_{r=2}^{n} \binom{n}{r}5^r = 25K$, where $K$ is an integer.
Substitute this back into equation (ii):
$6^n - 5n = 1 + 25K$
[For $n \ge 2$]
This shows that for $n \ge 2$, $6^n - 5n$ is in the form $25K + 1$, meaning it leaves a remainder of $1$ when divided by $25$.
Combining all cases ($n=0, n=1, n \ge 2$), we see that $6^n - 5n$ can always be written in the form $25k + 1$ for some integer $k$ (where $k=0$ for $n=0, 1$ and $k=K$ for $n \ge 2$).
Conclusion:
In all cases, when $6^n - 5n$ is divided by $25$, the remainder is $1$. Thus, $6^n - 5n$ always leaves remainder $1$ when divided by $25$.
Exercise 7.1
Expand each of the expressions in Exercises 1 to 5.
Question 1. (1 – 2x)5
Answer:
Solution:
We need to expand the expression $(1 - 2x)^5$. This is in the form of $(a+b)^n$, where $a=1$, $b=-2x$, and $n=5$.
We can use the Binomial Theorem, which states that for a positive integer $n$,
$(a+b)^n = \sum\limits_{r=0}^{n} \binom{n}{r} a^{n-r} b^{r}$
Substituting $a=1$, $b=-2x$, and $n=5$, we get:
$(1 - 2x)^5 = \sum\limits_{r=0}^{5} \binom{5}{r} (1)^{5-r} (-2x)^{r}$
$(1 - 2x)^5 = \binom{5}{0}(1)^5(-2x)^0 + \binom{5}{1}(1)^4(-2x)^1 + \binom{5}{2}(1)^3(-2x)^2 + \binom{5}{3}(1)^2(-2x)^3 + \binom{5}{4}(1)^1(-2x)^4 + \binom{5}{5}(1)^0(-2x)^5$
Now, we calculate each term:
Term 1 (r=0): $\binom{5}{0}(1)^5(-2x)^0 = 1 \cdot 1 \cdot 1 = 1$
Term 2 (r=1): $\binom{5}{1}(1)^4(-2x)^1 = 5 \cdot 1 \cdot (-2x) = -10x$
Term 3 (r=2): $\binom{5}{2}(1)^3(-2x)^2 = 10 \cdot 1 \cdot (4x^2) = 40x^2$
Term 4 (r=3): $\binom{5}{3}(1)^2(-2x)^3 = 10 \cdot 1 \cdot (-8x^3) = -80x^3$
Term 5 (r=4): $\binom{5}{4}(1)^1(-2x)^4 = 5 \cdot 1 \cdot (16x^4) = 80x^4$
Term 6 (r=5): $\binom{5}{5}(1)^0(-2x)^5 = 1 \cdot 1 \cdot (-32x^5) = -32x^5$
Summing these terms, we get the expansion:
$(1 - 2x)^5 = 1 + (-10x) + 40x^2 + (-80x^3) + 80x^4 + (-32x^5)$
$(1 - 2x)^5 = 1 - 10x + 40x^2 - 80x^3 + 80x^4 - 32x^5$
The expanded form of $(1 - 2x)^5$ is $1 - 10x + 40x^2 - 80x^3 + 80x^4 - 32x^5$.
Question 2. $\left( \frac{2}{x}-\frac{x}{2} \right)^{5}$
Answer:
Solution:
We need to expand the expression $\left( \frac{2}{x}-\frac{x}{2} \right)^{5}$. This is in the form of $(a+b)^n$, where $a=\frac{2}{x}$, $b=-\frac{x}{2}$, and $n=5$.
We use the Binomial Theorem, which states that:
$(a+b)^n = \sum\limits_{r=0}^{n} \binom{n}{r} a^{n-r} b^{r}$
Substituting $a=\frac{2}{x}$, $b=-\frac{x}{2}$, and $n=5$, we get:
$\left( \frac{2}{x}-\frac{x}{2} \right)^{5} = \sum\limits_{r=0}^{5} \binom{5}{r} \left(\frac{2}{x}\right)^{5-r} \left(-\frac{x}{2}\right)^{r}$
This expands to:
$\binom{5}{0}\left(\frac{2}{x}\right)^5\left(-\frac{x}{2}\right)^0 + \binom{5}{1}\left(\frac{2}{x}\right)^4\left(-\frac{x}{2}\right)^1 + \binom{5}{2}\left(\frac{2}{x}\right)^3\left(-\frac{x}{2}\right)^2 + \binom{5}{3}\left(\frac{2}{x}\right)^2\left(-\frac{x}{2}\right)^3 + \binom{5}{4}\left(\frac{2}{x}\right)^1\left(-\frac{x}{2}\right)^4 + \binom{5}{5}\left(\frac{2}{x}\right)^0\left(-\frac{x}{2}\right)^5$
Now, we calculate each term:
Term for $r=0$: $\binom{5}{0}\left(\frac{2}{x}\right)^5\left(-\frac{x}{2}\right)^0 = 1 \cdot \frac{2^5}{x^5} \cdot 1 = \frac{32}{x^5}$
Term for $r=1$: $\binom{5}{1}\left(\frac{2}{x}\right)^4\left(-\frac{x}{2}\right)^1 = 5 \cdot \frac{2^4}{x^4} \cdot \left(-\frac{x}{2}\right) = 5 \cdot \frac{16}{x^4} \cdot \left(-\frac{x}{2}\right) = -\frac{5 \cdot 16 \cdot x}{2 \cdot x^4} = -\frac{40}{x^3}$
Term for $r=2$: $\binom{5}{2}\left(\frac{2}{x}\right)^3\left(-\frac{x}{2}\right)^2 = 10 \cdot \frac{2^3}{x^3} \cdot \frac{x^2}{2^2} = 10 \cdot \frac{8}{x^3} \cdot \frac{x^2}{4} = \frac{10 \cdot 8 \cdot x^2}{4 \cdot x^3} = \frac{20}{x}$
Term for $r=3$: $\binom{5}{3}\left(\frac{2}{x}\right)^2\left(-\frac{x}{2}\right)^3 = 10 \cdot \frac{2^2}{x^2} \cdot \left(-\frac{x^3}{2^3}\right) = 10 \cdot \frac{4}{x^2} \cdot \left(-\frac{x^3}{8}\right) = -\frac{10 \cdot 4 \cdot x^3}{8 \cdot x^2} = -5x$
Term for $r=4$: $\binom{5}{4}\left(\frac{2}{x}\right)^1\left(-\frac{x}{2}\right)^4 = 5 \cdot \frac{2}{x} \cdot \frac{x^4}{2^4} = 5 \cdot \frac{2}{x} \cdot \frac{x^4}{16} = \frac{5 \cdot 2 \cdot x^4}{16 \cdot x} = \frac{10x^3}{16} = \frac{5x^3}{8}$
Term for $r=5$: $\binom{5}{5}\left(\frac{2}{x}\right)^0\left(-\frac{x}{2}\right)^5 = 1 \cdot 1 \cdot \left(-\frac{x^5}{2^5}\right) = -\frac{x^5}{32}$
Summing these terms, we get the expansion:
$\left( \frac{2}{x}-\frac{x}{2} \right)^{5} = \frac{32}{x^5} - \frac{40}{x^3} + \frac{20}{x} - 5x + \frac{5x^3}{8} - \frac{x^5}{32}$
The expanded form of $\left( \frac{2}{x}-\frac{x}{2} \right)^{5}$ is $\frac{32}{x^5} - \frac{40}{x^3} + \frac{20}{x} - 5x + \frac{5x^3}{8} - \frac{x^5}{32}$.
Question 3. (2x – 3)6
Answer:
Solution:
We need to expand the expression $(2x - 3)^6$. This is in the form of $(a+b)^n$, where $a=2x$, $b=-3$, and $n=6$.
We use the Binomial Theorem, which states that for a positive integer $n$,
$(a+b)^n = \sum\limits_{r=0}^{n} \binom{n}{r} a^{n-r} b^{r}$
Substituting $a=2x$, $b=-3$, and $n=6$, we get:
$(2x - 3)^6 = \sum\limits_{r=0}^{6} \binom{6}{r} (2x)^{6-r} (-3)^{r}$
This expands to:
$\binom{6}{0}(2x)^6(-3)^0 + \binom{6}{1}(2x)^5(-3)^1 + \binom{6}{2}(2x)^4(-3)^2 + \binom{6}{3}(2x)^3(-3)^3 + \binom{6}{4}(2x)^2(-3)^4 + \binom{6}{5}(2x)^1(-3)^5 + \binom{6}{6}(2x)^0(-3)^6$
Now, we calculate each term:
Term for $r=0$: $\binom{6}{0}(2x)^6(-3)^0 = 1 \cdot (2^6 x^6) \cdot 1 = 1 \cdot 64x^6 \cdot 1 = 64x^6$
Term for $r=1$: $\binom{6}{1}(2x)^5(-3)^1 = 6 \cdot (2^5 x^5) \cdot (-3) = 6 \cdot 32x^5 \cdot (-3) = -576x^5$
Term for $r=2$: $\binom{6}{2}(2x)^4(-3)^2 = 15 \cdot (2^4 x^4) \cdot 9 = 15 \cdot 16x^4 \cdot 9 = 2160x^4$
Term for $r=3$: $\binom{6}{3}(2x)^3(-3)^3 = 20 \cdot (2^3 x^3) \cdot (-27) = 20 \cdot 8x^3 \cdot (-27) = -4320x^3$
Term for $r=4$: $\binom{6}{4}(2x)^2(-3)^4 = 15 \cdot (2^2 x^2) \cdot 81 = 15 \cdot 4x^2 \cdot 81 = 4860x^2$
Term for $r=5$: $\binom{6}{5}(2x)^1(-3)^5 = 6 \cdot (2x) \cdot (-243) = 12x \cdot (-243) = -2916x$
Term for $r=6$: $\binom{6}{6}(2x)^0(-3)^6 = 1 \cdot 1 \cdot 729 = 729$
Summing these terms, we get the expansion:
$(2x - 3)^6 = 64x^6 + (-576x^5) + 2160x^4 + (-4320x^3) + 4860x^2 + (-2916x) + 729$
$(2x - 3)^6 = 64x^6 - 576x^5 + 2160x^4 - 4320x^3 + 4860x^2 - 2916x + 729$
The expanded form of $(2x - 3)^6$ is $64x^6 - 576x^5 + 2160x^4 - 4320x^3 + 4860x^2 - 2916x + 729$.
Question 4. $\left( \frac{x}{3}+\frac{1}{x} \right)^{5}$
Answer:
Solution:
We need to expand the expression $\left( \frac{x}{3}+\frac{1}{x} \right)^{5}$. This is in the form of $(a+b)^n$, where $a=\frac{x}{3}$, $b=\frac{1}{x}$, and $n=5$.
We use the Binomial Theorem, which states that for a positive integer $n$,
$(a+b)^n = \sum\limits_{r=0}^{n} \binom{n}{r} a^{n-r} b^{r}$
Substituting $a=\frac{x}{3}$, $b=\frac{1}{x}$, and $n=5$, we get:
$\left( \frac{x}{3}+\frac{1}{x} \right)^{5} = \sum\limits_{r=0}^{5} \binom{5}{r} \left(\frac{x}{3}\right)^{5-r} \left(\frac{1}{x}\right)^{r}$
This expands to:
$\binom{5}{0}\left(\frac{x}{3}\right)^5\left(\frac{1}{x}\right)^0 + \binom{5}{1}\left(\frac{x}{3}\right)^4\left(\frac{1}{x}\right)^1 + \binom{5}{2}\left(\frac{x}{3}\right)^3\left(\frac{1}{x}\right)^2 + \binom{5}{3}\left(\frac{x}{3}\right)^2\left(\frac{1}{x}\right)^3 + \binom{5}{4}\left(\frac{x}{3}\right)^1\left(\frac{1}{x}\right)^4 + \binom{5}{5}\left(\frac{x}{3}\right)^0\left(\frac{1}{x}\right)^5$
Now, we calculate each term:
Term for $r=0$: $\binom{5}{0}\left(\frac{x}{3}\right)^5\left(\frac{1}{x}\right)^0 = 1 \cdot \frac{x^5}{3^5} \cdot 1 = \frac{x^5}{243}$
Term for $r=1$: $\binom{5}{1}\left(\frac{x}{3}\right)^4\left(\frac{1}{x}\right)^1 = 5 \cdot \frac{x^4}{3^4} \cdot \frac{1}{x} = 5 \cdot \frac{x^4}{81} \cdot \frac{1}{x} = \frac{5x^{4-1}}{81} = \frac{5x^3}{81}$
Term for $r=2$: $\binom{5}{2}\left(\frac{x}{3}\right)^3\left(\frac{1}{x}\right)^2 = 10 \cdot \frac{x^3}{3^3} \cdot \frac{1}{x^2} = 10 \cdot \frac{x^3}{27} \cdot \frac{1}{x^2} = \frac{10x^{3-2}}{27} = \frac{10x}{27}$
Term for $r=3$: $\binom{5}{3}\left(\frac{x}{3}\right)^2\left(\frac{1}{x}\right)^3 = 10 \cdot \frac{x^2}{3^2} \cdot \frac{1}{x^3} = 10 \cdot \frac{x^2}{9} \cdot \frac{1}{x^3} = \frac{10x^{2-3}}{9} = \frac{10x^{-1}}{9} = \frac{10}{9x}$
Term for $r=4$: $\binom{5}{4}\left(\frac{x}{3}\right)^1\left(\frac{1}{x}\right)^4 = 5 \cdot \frac{x}{3} \cdot \frac{1}{x^4} = \frac{5x^{1-4}}{3} = \frac{5x^{-3}}{3} = \frac{5}{3x^3}$
Term for $r=5$: $\binom{5}{5}\left(\frac{x}{3}\right)^0\left(\frac{1}{x}\right)^5 = 1 \cdot 1 \cdot \frac{1}{x^5} = \frac{1}{x^5}$
Summing these terms, we get the expansion:
$\left( \frac{x}{3}+\frac{1}{x} \right)^{5} = \frac{x^5}{243} + \frac{5x^3}{81} + \frac{10x}{27} + \frac{10}{9x} + \frac{5}{3x^3} + \frac{1}{x^5}$
The expanded form of $\left( \frac{x}{3}+\frac{1}{x} \right)^{5}$ is $\frac{x^5}{243} + \frac{5x^3}{81} + \frac{10x}{27} + \frac{10}{9x} + \frac{5}{3x^3} + \frac{1}{x^5}$.
Question 5. $\left( x+\frac{1}{x} \right)^{6}$
Answer:
Solution:
We need to expand the expression $\left( x+\frac{1}{x} \right)^{6}$. This is in the form of $(a+b)^n$, where $a=x$, $b=\frac{1}{x}$, and $n=6$.
We use the Binomial Theorem, which states that for a positive integer $n$,
$(a+b)^n = \sum\limits_{r=0}^{n} \binom{n}{r} a^{n-r} b^{r}$
Substituting $a=x$, $b=\frac{1}{x}$, and $n=6$, we get:
$\left( x+\frac{1}{x} \right)^{6} = \sum\limits_{r=0}^{6} \binom{6}{r} (x)^{6-r} \left(\frac{1}{x}\right)^{r}$
This expands to:
$\binom{6}{0}x^6\left(\frac{1}{x}\right)^0 + \binom{6}{1}x^5\left(\frac{1}{x}\right)^1 + \binom{6}{2}x^4\left(\frac{1}{x}\right)^2 + \binom{6}{3}x^3\left(\frac{1}{x}\right)^3 + \binom{6}{4}x^2\left(\frac{1}{x}\right)^4 + \binom{6}{5}x^1\left(\frac{1}{x}\right)^5 + \binom{6}{6}x^0\left(\frac{1}{x}\right)^6$
Now, we calculate each term using the binomial coefficients: $\binom{6}{0}=1, \binom{6}{1}=6, \binom{6}{2}=15, \binom{6}{3}=20, \binom{6}{4}=15, \binom{6}{5}=6, \binom{6}{6}=1$.
Term for $r=0$: $\binom{6}{0}x^6\left(\frac{1}{x}\right)^0 = 1 \cdot x^6 \cdot 1 = x^6$
Term for $r=1$: $\binom{6}{1}x^5\left(\frac{1}{x}\right)^1 = 6 \cdot x^5 \cdot x^{-1} = 6x^{5-1} = 6x^4$
Term for $r=2$: $\binom{6}{2}x^4\left(\frac{1}{x}\right)^2 = 15 \cdot x^4 \cdot x^{-2} = 15x^{4-2} = 15x^2$
Term for $r=3$: $\binom{6}{3}x^3\left(\frac{1}{x}\right)^3 = 20 \cdot x^3 \cdot x^{-3} = 20x^{3-3} = 20x^0 = 20$
Term for $r=4$: $\binom{6}{4}x^2\left(\frac{1}{x}\right)^4 = 15 \cdot x^2 \cdot x^{-4} = 15x^{2-4} = 15x^{-2} = \frac{15}{x^2}$
Term for $r=5$: $\binom{6}{5}x^1\left(\frac{1}{x}\right)^5 = 6 \cdot x^1 \cdot x^{-5} = 6x^{1-5} = 6x^{-4} = \frac{6}{x^4}$
Term for $r=6$: $\binom{6}{6}x^0\left(\frac{1}{x}\right)^6 = 1 \cdot x^0 \cdot x^{-6} = 1 \cdot 1 \cdot x^{-6} = \frac{1}{x^6}$
Summing these terms, we get the expansion:
$\left( x+\frac{1}{x} \right)^{6} = x^6 + 6x^4 + 15x^2 + 20 + \frac{15}{x^2} + \frac{6}{x^4} + \frac{1}{x^6}$
The expanded form of $\left( x+\frac{1}{x} \right)^{6}$ is $x^6 + 6x^4 + 15x^2 + 20 + \frac{15}{x^2} + \frac{6}{x^4} + \frac{1}{x^6}$.
Using binomial theorem, evaluate each of the following:
Question 6. (96)3
Answer:
Solution:
We need to evaluate $(96)^3$ using the binomial theorem.
We can write 96 as $100 - 4$. So, $(96)^3 = (100 - 4)^3$.
This is in the form of $(a-b)^n$, where $a=100$, $b=4$, and $n=3$.
We use the Binomial Theorem for $(a-b)^n$, which states:
$(a-b)^n = \sum\limits_{r=0}^{n} \binom{n}{r} a^{n-r} (-b)^{r}$
For $n=3$, the expansion is:
$(a-b)^3 = \binom{3}{0}a^3(-b)^0 + \binom{3}{1}a^2(-b)^1 + \binom{3}{2}a^1(-b)^2 + \binom{3}{3}a^0(-b)^3$
Substituting $a=100$ and $b=4$, we get:
$(100-4)^3 = \binom{3}{0}(100)^3(-4)^0 + \binom{3}{1}(100)^2(-4)^1 + \binom{3}{2}(100)^1(-4)^2 + \binom{3}{3}(100)^0(-4)^3$
Now, we calculate each term using the binomial coefficients: $\binom{3}{0}=1, \binom{3}{1}=3, \binom{3}{2}=3, \binom{3}{3}=1$.
Term 1 (r=0): $\binom{3}{0}(100)^3(-4)^0 = 1 \cdot 1,000,000 \cdot 1 = 1,000,000$
Term 2 (r=1): $\binom{3}{1}(100)^2(-4)^1 = 3 \cdot 10,000 \cdot (-4) = -120,000$
Term 3 (r=2): $\binom{3}{2}(100)^1(-4)^2 = 3 \cdot 100 \cdot 16 = 300 \cdot 16 = 4800$
Term 4 (r=3): $\binom{3}{3}(100)^0(-4)^3 = 1 \cdot 1 \cdot (-64) = -64$
Summing these terms, we get the value of $(96)^3$:
$(96)^3 = 1,000,000 + (-120,000) + 4800 + (-64)$
$(96)^3 = 1,000,000 - 120,000 + 4800 - 64$
$(96)^3 = 880,000 + 4800 - 64$
$(96)^3 = 884,800 - 64$
$(96)^3 = 884,736$
The value of $(96)^3$ evaluated using the binomial theorem is $884,736$.
Question 7. (102)5
Answer:
Solution:
We need to evaluate $(102)^5$ using the binomial theorem.
We can write 102 as $100 + 2$. So, $(102)^5 = (100 + 2)^5$.
This is in the form of $(a+b)^n$, where $a=100$, $b=2$, and $n=5$.
We use the Binomial Theorem, which states that for a positive integer $n$,
$(a+b)^n = \sum\limits_{r=0}^{n} \binom{n}{r} a^{n-r} b^{r}$
For $n=5$, the expansion is:
$(100+2)^5 = \binom{5}{0}(100)^5(2)^0 + \binom{5}{1}(100)^4(2)^1 + \binom{5}{2}(100)^3(2)^2 + \binom{5}{3}(100)^2(2)^3 + \binom{5}{4}(100)^1(2)^4 + \binom{5}{5}(100)^0(2)^5$
Now, we calculate each term using the binomial coefficients: $\binom{5}{0}=1, \binom{5}{1}=5, \binom{5}{2}=10, \binom{5}{3}=10, \binom{5}{4}=5, \binom{5}{5}=1$.
Term for $r=0$: $\binom{5}{0}(100)^5(2)^0 = 1 \cdot (10000000000) \cdot 1 = 10,000,000,000$
Term for $r=1$: $\binom{5}{1}(100)^4(2)^1 = 5 \cdot (100000000) \cdot 2 = 10 \cdot 100,000,000 = 1,000,000,000$
Term for $r=2$: $\binom{5}{2}(100)^3(2)^2 = 10 \cdot (1000000) \cdot 4 = 40 \cdot 1,000,000 = 40,000,000$
Term for $r=3$: $\binom{5}{3}(100)^2(2)^3 = 10 \cdot (10000) \cdot 8 = 80 \cdot 10,000 = 800,000$
Term for $r=4$: $\binom{5}{4}(100)^1(2)^4 = 5 \cdot (100) \cdot 16 = 500 \cdot 16 = 8000$
Term for $r=5$: $\binom{5}{5}(100)^0(2)^5 = 1 \cdot 1 \cdot 32 = 32$
Summing these terms, we get the value of $(102)^5$:
$(102)^5 = 10,000,000,000 + 1,000,000,000 + 40,000,000 + 800,000 + 8000 + 32$
$(102)^5 = 11,000,000,000 + 40,000,000 + 800,000 + 8000 + 32$
$(102)^5 = 11,040,000,000 + 800,000 + 8000 + 32$
$(102)^5 = 11,040,800,000 + 8000 + 32$
$(102)^5 = 11,040,808,000 + 32$
$(102)^5 = 11,040,808,032$
The value of $(102)^5$ evaluated using the binomial theorem is $11,040,808,032$.
Question 8. (101)4
Answer:
Solution:
We need to evaluate $(101)^4$ using the binomial theorem.
We can write 101 as $100 + 1$. So, $(101)^4 = (100 + 1)^4$.
This is in the form of $(a+b)^n$, where $a=100$, $b=1$, and $n=4$.
We use the Binomial Theorem, which states that for a positive integer $n$,
$(a+b)^n = \sum\limits_{r=0}^{n} \binom{n}{r} a^{n-r} b^{r}$
For $n=4$, the expansion is:
$(100+1)^4 = \binom{4}{0}(100)^4(1)^0 + \binom{4}{1}(100)^3(1)^1 + \binom{4}{2}(100)^2(1)^2 + \binom{4}{3}(100)^1(1)^3 + \binom{4}{4}(100)^0(1)^4$
Now, we calculate each term using the binomial coefficients: $\binom{4}{0}=1, \binom{4}{1}=4, \binom{4}{2}=6, \binom{4}{3}=4, \binom{4}{4}=1$.
Term for $r=0$: $\binom{4}{0}(100)^4(1)^0 = 1 \cdot (100,000,000) \cdot 1 = 100,000,000$
Term for $r=1$: $\binom{4}{1}(100)^3(1)^1 = 4 \cdot (1,000,000) \cdot 1 = 4,000,000$
Term for $r=2$: $\binom{4}{2}(100)^2(1)^2 = 6 \cdot (10,000) \cdot 1 = 60,000$
Term for $r=3$: $\binom{4}{3}(100)^1(1)^3 = 4 \cdot (100) \cdot 1 = 400$
Term for $r=4$: $\binom{4}{4}(100)^0(1)^4 = 1 \cdot 1 \cdot 1 = 1$
Summing these terms, we get the value of $(101)^4$:
$(101)^4 = 100,000,000 + 4,000,000 + 60,000 + 400 + 1$
$(101)^4 = 104,000,000 + 60,000 + 400 + 1$
$(101)^4 = 104,060,000 + 400 + 1$
$(101)^4 = 104,060,400 + 1$
$(101)^4 = 104,060,401$
The value of $(101)^4$ evaluated using the binomial theorem is $104,060,401$.
Question 9. (99)5
Answer:
Solution:
We need to evaluate $(99)^5$ using the binomial theorem.
We can write 99 as $100 - 1$. So, $(99)^5 = (100 - 1)^5$.
This is in the form of $(a-b)^n$, where $a=100$, $b=1$, and $n=5$.
We use the Binomial Theorem for $(a-b)^n$, which states:
$(a-b)^n = \sum\limits_{r=0}^{n} \binom{n}{r} a^{n-r} (-b)^{r}$
For $n=5$, the expansion is:
$(100-1)^5 = \binom{5}{0}(100)^5(-1)^0 + \binom{5}{1}(100)^4(-1)^1 + \binom{5}{2}(100)^3(-1)^2 + \binom{5}{3}(100)^2(-1)^3 + \binom{5}{4}(100)^1(-1)^4 + \binom{5}{5}(100)^0(-1)^5$
Now, we calculate each term using the binomial coefficients: $\binom{5}{0}=1, \binom{5}{1}=5, \binom{5}{2}=10, \binom{5}{3}=10, \binom{5}{4}=5, \binom{5}{5}=1$.
Term for $r=0$: $\binom{5}{0}(100)^5(-1)^0 = 1 \cdot (10000000000) \cdot 1 = 10,000,000,000$
Term for $r=1$: $\binom{5}{1}(100)^4(-1)^1 = 5 \cdot (100000000) \cdot (-1) = -500,000,000$
Term for $r=2$: $\binom{5}{2}(100)^3(-1)^2 = 10 \cdot (1000000) \cdot 1 = 10,000,000$
Term for $r=3$: $\binom{5}{3}(100)^2(-1)^3 = 10 \cdot (10000) \cdot (-1) = -100,000$
Term for $r=4$: $\binom{5}{4}(100)^1(-1)^4 = 5 \cdot (100) \cdot 1 = 500$
Term for $r=5$: $\binom{5}{5}(100)^0(-1)^5 = 1 \cdot 1 \cdot (-1) = -1$
Summing these terms, we get the value of $(99)^5$:
$(99)^5 = 10,000,000,000 + (-500,000,000) + 10,000,000 + (-100,000) + 500 + (-1)$
$(99)^5 = 10,000,000,000 - 500,000,000 + 10,000,000 - 100,000 + 500 - 1$
$(99)^5 = 9,500,000,000 + 10,000,000 - 100,000 + 500 - 1$
$(99)^5 = 9,510,000,000 - 100,000 + 500 - 1$
$(99)^5 = 9,509,900,000 + 500 - 1$
$(99)^5 = 9,509,900,500 - 1$
$(99)^5 = 9,509,900,499$
The value of $(99)^5$ evaluated using the binomial theorem is $9,509,900,499$.
Question 10. Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Answer:
Solution:
We need to compare $(1.1)^{10000}$ and $1000$.
Consider the expression $(1.1)^{10000}$. We can write $1.1$ as $1 + 0.1$. So, we need to evaluate $(1 + 0.1)^{10000}$.
This is in the form $(1+x)^n$, where $x = 0.1$ and $n = 10000$. We can use the Binomial Theorem to expand this expression.
The Binomial Theorem for $(1+x)^n$, where $n$ is a positive integer, is given by:
$(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + \binom{n}{n}x^n$
Substituting $n = 10000$ and $x = 0.1$, we get:
$(1 + 0.1)^{10000} = \binom{10000}{0} + \binom{10000}{1}(0.1) + \binom{10000}{2}(0.1)^2 + \binom{10000}{3}(0.1)^3 + \dots + \binom{10000}{10000}(0.1)^{10000}$
Let's calculate the first two terms of the expansion:
The first term is $\binom{10000}{0} = 1$.
The second term is $\binom{10000}{1}(0.1) = 10000 \cdot (0.1) = 10000 \cdot \frac{1}{10} = 1000$.
So, the expansion begins as:
$(1.1)^{10000} = 1 + 1000 + \binom{10000}{2}(0.1)^2 + \binom{10000}{3}(0.1)^3 + \dots + \binom{10000}{10000}(0.1)^{10000}$
$(1.1)^{10000} = 1001 + \binom{10000}{2}(0.1)^2 + \binom{10000}{3}(0.1)^3 + \dots + \binom{10000}{10000}(0.1)^{10000}$
Since $n=10000$ is a positive integer and $x=0.1$ is positive, all the terms $\binom{n}{r}x^r$ for $r \ge 2$ in the expansion are positive.
Therefore, the sum of the remaining terms, $\binom{10000}{2}(0.1)^2 + \binom{10000}{3}(0.1)^3 + \dots$, is a positive value.
This means $(1.1)^{10000} = 1001 + (\text{a positive value})$.
Hence, $(1.1)^{10000} > 1001$.
We are comparing $(1.1)^{10000}$ with $1000$.
We have shown that $(1.1)^{10000} > 1001$.
Since $1001 > 1000$, by the transitive property of inequality, we can conclude that $(1.1)^{10000}$ is greater than $1000$.
Thus, $(1.1)^{10000} > 1000$.
Conclusion: $(1.1)^{10000}$ is larger than $1000$.
Question 11. Find (a + b)4 – (a – b)4 . Hence, evaluate $(\sqrt{3} + \sqrt{2})^4 - (\sqrt{3} - \sqrt{2})^4$ .
Answer:
Solution:
First, we need to find the expansion of $(a + b)^4 – (a – b)^4$.
We will use the Binomial Theorem to expand $(a+b)^4$ and $(a-b)^4$ separately.
The Binomial Theorem states that $(x+y)^n = \sum\limits_{r=0}^{n} \binom{n}{r} x^{n-r} y^{r}$.
For $(a+b)^4$, we have $n=4$, $x=a$, and $y=b$:
$(a+b)^4 = \binom{4}{0}a^4b^0 + \binom{4}{1}a^3b^1 + \binom{4}{2}a^2b^2 + \binom{4}{3}a^1b^3 + \binom{4}{4}a^0b^4$
Calculating the binomial coefficients: $\binom{4}{0}=1, \binom{4}{1}=4, \binom{4}{2}=6, \binom{4}{3}=4, \binom{4}{4}=1$.
So, $(a+b)^4 = 1 \cdot a^4 \cdot 1 + 4 \cdot a^3 \cdot b + 6 \cdot a^2 \cdot b^2 + 4 \cdot a \cdot b^3 + 1 \cdot 1 \cdot b^4$
$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$
For $(a-b)^4$, we have $n=4$, $x=a$, and $y=-b$:
$(a-b)^4 = \binom{4}{0}a^4(-b)^0 + \binom{4}{1}a^3(-b)^1 + \binom{4}{2}a^2(-b)^2 + \binom{4}{3}a^1(-b)^3 + \binom{4}{4}a^0(-b)^4$
$(a-b)^4 = 1 \cdot a^4 \cdot 1 + 4 \cdot a^3 \cdot (-b) + 6 \cdot a^2 \cdot b^2 + 4 \cdot a \cdot (-b^3) + 1 \cdot 1 \cdot b^4$
$(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4$
Now, we subtract the expansion of $(a-b)^4$ from the expansion of $(a+b)^4$:
$(a+b)^4 - (a-b)^4 = (a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4) - (a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4)$
$(a+b)^4 - (a-b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4 - a^4 + 4a^3b - 6a^2b^2 + 4ab^3 - b^4$
Combine like terms:
$= (a^4 - a^4) + (4a^3b + 4a^3b) + (6a^2b^2 - 6a^2b^2) + (4ab^3 + 4ab^3) + (b^4 - b^4)$
$= 0 + 8a^3b + 0 + 8ab^3 + 0$
$(a+b)^4 - (a-b)^4 = 8a^3b + 8ab^3$
We can factor out $8ab$ from the result:
$(a+b)^4 - (a-b)^4 = 8ab(a^2 + b^2)$
Next, we need to evaluate $(\sqrt{3} + \sqrt{2})^4 - (\sqrt{3} - \sqrt{2})^4$ using the result we just found.
Comparing this expression with $(a+b)^4 - (a-b)^4$, we can identify $a = \sqrt{3}$ and $b = \sqrt{2}$.
Substitute these values into the simplified expression $8ab(a^2 + b^2)$.
First, calculate $a^2$ and $b^2$:
$a^2 = (\sqrt{3})^2 = 3$
$b^2 = (\sqrt{2})^2 = 2$
Now substitute $a=\sqrt{3}$, $b=\sqrt{2}$, $a^2=3$, and $b^2=2$ into the expression $8ab(a^2 + b^2)$:
$(\sqrt{3} + \sqrt{2})^4 - (\sqrt{3} - \sqrt{2})^4 = 8(\sqrt{3})(\sqrt{2})((\sqrt{3})^2 + (\sqrt{2})^2)$
$= 8\sqrt{3 \cdot 2}(3 + 2)$
$= 8\sqrt{6}(5)$
$= 40\sqrt{6}$
Thus, the value of $(\sqrt{3} + \sqrt{2})^4 - (\sqrt{3} - \sqrt{2})^4$ is $40\sqrt{6}$.
Question 12. Find (x + 1)6 + (x – 1)6 . Hence or otherwise evaluate $(\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6$ .
Answer:
Solution:
Part 1: Find $(x + 1)^6 + (x – 1)^6$
We use the Binomial Theorem to expand $(x+1)^6$ and $(x-1)^6$. The Binomial Theorem for $(a+b)^n$ is given by $\sum\limits_{r=0}^{n} \binom{n}{r} a^{n-r} b^{r}$.
Expansion of $(x+1)^6$:
Here $a=x, b=1, n=6$. The terms are:
$\binom{6}{0}x^6(1)^0 = 1 \cdot x^6 \cdot 1 = x^6$
$\binom{6}{1}x^5(1)^1 = 6 \cdot x^5 \cdot 1 = 6x^5$
$\binom{6}{2}x^4(1)^2 = 15 \cdot x^4 \cdot 1 = 15x^4$
$\binom{6}{3}x^3(1)^3 = 20 \cdot x^3 \cdot 1 = 20x^3$
$\binom{6}{4}x^2(1)^4 = 15 \cdot x^2 \cdot 1 = 15x^2$
$\binom{6}{5}x^1(1)^5 = 6 \cdot x^1 \cdot 1 = 6x$
$\binom{6}{6}x^0(1)^6 = 1 \cdot 1 \cdot 1 = 1$
So, $(x+1)^6 = x^6 + 6x^5 + 15x^4 + 20x^3 + 15x^2 + 6x + 1$
Expansion of $(x-1)^6$:
Here $a=x, b=-1, n=6$. The terms will have alternating signs:
$\binom{6}{0}x^6(-1)^0 = 1 \cdot x^6 \cdot 1 = x^6$
$\binom{6}{1}x^5(-1)^1 = 6 \cdot x^5 \cdot (-1) = -6x^5$
$\binom{6}{2}x^4(-1)^2 = 15 \cdot x^4 \cdot 1 = 15x^4$
$\binom{6}{3}x^3(-1)^3 = 20 \cdot x^3 \cdot (-1) = -20x^3$
$\binom{6}{4}x^2(-1)^4 = 15 \cdot x^2 \cdot 1 = 15x^2$
$\binom{6}{5}x^1(-1)^5 = 6 \cdot x^1 \cdot (-1) = -6x$
$\binom{6}{6}x^0(-1)^6 = 1 \cdot 1 \cdot 1 = 1$
So, $(x-1)^6 = x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1$
Now, we add the two expansions:
$(x + 1)^6 + (x – 1)^6 = (x^6 + 6x^5 + 15x^4 + 20x^3 + 15x^2 + 6x + 1) + (x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1)$
Combine the like terms:
$(x + 1)^6 + (x – 1)^6 = (x^6 + x^6) + (6x^5 - 6x^5) + (15x^4 + 15x^4) + (20x^3 - 20x^3) + (15x^2 + 15x^2) + (6x - 6x) + (1 + 1)$
$(x + 1)^6 + (x – 1)^6 = 2x^6 + 0 + 30x^4 + 0 + 30x^2 + 0 + 2$
$(x + 1)^6 + (x – 1)^6 = 2x^6 + 30x^4 + 30x^2 + 2$
Part 2: Evaluate $(\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6$
We can use the result from Part 1 by substituting $x = \sqrt{2}$ into the expression $2x^6 + 30x^4 + 30x^2 + 2$.
If $x = \sqrt{2}$, then:
$x^2 = (\sqrt{2})^2 = 2$
$x^4 = (x^2)^2 = (2)^2 = 4$
$x^6 = (x^2)^3 = (2)^3 = 8$
Substitute these values into $2x^6 + 30x^4 + 30x^2 + 2$:
$2(8) + 30(4) + 30(2) + 2$
$= 16 + 120 + 60 + 2$
$= 136 + 60 + 2$
$= 196 + 2$
$= 198$
The value of $(x + 1)^6 + (x – 1)^6$ is $2x^6 + 30x^4 + 30x^2 + 2$.
The value of $(\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6$ is $198$.
Question 13. Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Answer:
Given:
The expression $9^{n+1} – 8n – 9$, where $n$ is a positive integer.
To Prove:
That $9^{n+1} – 8n – 9$ is divisible by 64 whenever $n$ is a positive integer.
Proof:
Consider the term $9^{n+1}$. We can write $9$ as $1+8$. Thus, $9^{n+1} = (1+8)^{n+1}$.
Using the Binomial Theorem, the expansion of $(a+b)^m$ for a positive integer $m$ is given by:
$(a+b)^m = \sum\limits_{r=0}^{m} \binom{m}{r} a^{m-r} b^r$
Let $a=1$, $b=8$, and $m=n+1$. Expanding $(1+8)^{n+1}$ using the Binomial Theorem:
$(1+8)^{n+1} = \sum\limits_{r=0}^{n+1} \binom{n+1}{r} 1^{(n+1)-r} 8^r$
$(1+8)^{n+1} = \binom{n+1}{0}1^{n+1}8^0 + \binom{n+1}{1}1^{n}8^1 + \binom{n+1}{2}1^{n-1}8^2 + \binom{n+1}{3}1^{n-2}8^3 + \dots + \binom{n+1}{n+1}1^0 8^{n+1}$
Simplifying the terms, knowing that $\binom{n+1}{0} = 1$ and $\binom{n+1}{1} = n+1$:
$(1+8)^{n+1} = 1 \cdot 1 \cdot 1 + (n+1) \cdot 1 \cdot 8 + \binom{n+1}{2} \cdot 1 \cdot 8^2 + \binom{n+1}{3} \cdot 1 \cdot 8^3 + \dots + 1 \cdot 1 \cdot 8^{n+1}$
$9^{n+1} = 1 + 8(n+1) + \binom{n+1}{2}8^2 + \binom{n+1}{3}8^3 + \dots + 8^{n+1}$
$9^{n+1} = 1 + 8n + 8 + \binom{n+1}{2}8^2 + \binom{n+1}{3}8^3 + \dots + 8^{n+1}$
$9^{n+1} = 9 + 8n + \binom{n+1}{2}8^2 + \binom{n+1}{3}8^3 + \dots + 8^{n+1}$
Now, consider the expression $9^{n+1} - 8n - 9$. Substitute the expansion of $9^{n+1}$ into this expression:
$9^{n+1} - 8n - 9 = \left(9 + 8n + \binom{n+1}{2}8^2 + \binom{n+1}{3}8^3 + \dots + 8^{n+1}\right) - 8n - 9$
$9^{n+1} - 8n - 9 = 9 + 8n + \binom{n+1}{2}8^2 + \binom{n+1}{3}8^3 + \dots + 8^{n+1} - 8n - 9$
Combine the constant terms and the terms involving $n$:
$9^{n+1} - 8n - 9 = (9 - 9) + (8n - 8n) + \binom{n+1}{2}8^2 + \binom{n+1}{3}8^3 + \dots + 8^{n+1}$
$9^{n+1} - 8n - 9 = 0 + 0 + \binom{n+1}{2}8^2 + \binom{n+1}{3}8^3 + \dots + 8^{n+1}$
$9^{n+1} - 8n - 9 = \binom{n+1}{2}8^2 + \binom{n+1}{3}8^3 + \dots + \binom{n+1}{n+1}8^{n+1}$
We can express this sum using summation notation:
$9^{n+1} - 8n - 9 = \sum\limits_{r=2}^{n+1} \binom{n+1}{r} 8^r$
For any integer $r \ge 2$, we can write $8^r$ as $8^2 \cdot 8^{r-2}$. Since $8^2 = 64$, we have $8^r = 64 \cdot 8^{r-2}$.
Substitute this into the sum:
$9^{n+1} - 8n - 9 = \sum\limits_{r=2}^{n+1} \binom{n+1}{r} (64 \cdot 8^{r-2})$
Factor out the constant 64 from the sum:
$9^{n+1} - 8n - 9 = 64 \left(\sum\limits_{r=2}^{n+1} \binom{n+1}{r} 8^{r-2}\right)$
Let $K = \sum\limits_{r=2}^{n+1} \binom{n+1}{r} 8^{r-2}$.
Since $n$ is a positive integer, $n \in \{1, 2, 3, \dots\}$. This implies $n+1 \ge 2$. The summation runs from $r=2$ up to $n+1$. For each integer $r$ in this range, the binomial coefficient $\binom{n+1}{r}$ is an integer. The term $8^{r-2}$ is also an integer since $r \ge 2$ means $r-2 \ge 0$. The product of integers is an integer, and the sum of integers is an integer. Therefore, $K$ is an integer for all positive integers $n$.
$\boldsymbol{9^{n+1} - 8n - 9 = 64K}$
(Where K is an integer)
This equation shows that $9^{n+1} - 8n - 9$ can be expressed as 64 multiplied by an integer $K$. This means $9^{n+1} - 8n - 9$ is a multiple of 64.
Conclusion:
Using the Binomial Theorem, we have proven that $9^{n+1} – 8n – 9$ is always a multiple of 64 for any positive integer $n$. Therefore, $9^{n+1} – 8n – 9$ is divisible by 64.
Question 14. Prove that $\sum\limits_{r=0}^{n} 3^r\; ^nC_r = 4^n$ .
Answer:
To Prove:
$\sum\limits_{r=0}^{n} 3^r\; ^nC_r = 4^n$
Proof:
We will use the Binomial Theorem, which states that for any real numbers $x$ and $y$, and any non-negative integer $n$:
$(x+y)^n = \sum\limits_{r=0}^{n} \binom{n}{r} x^{n-r} y^r$
or equivalently,
$(x+y)^n = \sum\limits_{r=0}^{n} \binom{n}{r} x^{r} y^{n-r}$
The given summation is $\sum\limits_{r=0}^{n} 3^r\; ^nC_r$. Recall that $^nC_r = \binom{n}{r}$. So the sum is $\sum\limits_{r=0}^{n} \binom{n}{r} 3^r$.
Let's compare this sum with the binomial expansion formula $(x+y)^n = \sum\limits_{r=0}^{n} \binom{n}{r} x^{n-r} y^r$.
We need to match the term $\binom{n}{r} 3^r$ with $\binom{n}{r} x^{n-r} y^r$.
If we choose $y = 3$, the term becomes $\binom{n}{r} x^{n-r} 3^r$.
For this to match $\binom{n}{r} 3^r$, we must have $x^{n-r} = 1$ for all values of $r$ from $0$ to $n$. This is true if we choose $x = 1$.
Let $x = 1$ and $y = 3$ in the binomial expansion of $(x+y)^n$:
$(1+3)^n = \sum\limits_{r=0}^{n} \binom{n}{r} 1^{n-r} 3^r$
Since $1^{n-r} = 1$ for any integer value of $n-r$, the right side simplifies to:
$\sum\limits_{r=0}^{n} \binom{n}{r} 1 \cdot 3^r = \sum\limits_{r=0}^{n} \binom{n}{r} 3^r = \sum\limits_{r=0}^{n} 3^r\; ^nC_r$
The left side of the equation is $(1+3)^n = 4^n$.
Therefore, we have:
$4^n = \sum\limits_{r=0}^{n} 3^r\; ^nC_r$
This proves the required identity.
Hence, $\sum\limits_{r=0}^{n} 3^r\; ^nC_r = 4^n$.
Miscellaneous Exercise on Chapter 7
Question 1. If a and b are distinct integers, prove that a – b is a factor of an – bn , whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Answer:
Given:
a and b are distinct integers, and n is a positive integer.
To Prove:
$(a - b)$ is a factor of $a^n - b^n$.
Proof:
We want to show that $a^n - b^n$ can be expressed as the product of $(a-b)$ and some integer $K$.
Following the hint, we can rewrite $a^n$ by adding and subtracting b within the base:
$a^n = ((a - b) + b)^n$
Now, we apply the binomial theorem to expand $((a - b) + b)^n$. Let $x = (a-b)$ and $y = b$. Then $(x+y)^n = \sum\limits_{k=0}^n \binom{n}{k}x^{n-k}y^k$. Or in the form used in the steps below, $(x+y)^n = \sum\limits_{k=0}^n \binom{n}{k}x^k y^{n-k}$.
$a^n = ((a-b) + b)^n = \binom{n}{0}(a-b)^0 b^{n} + \binom{n}{1}(a-b)^1 b^{n-1} + \binom{n}{2}(a-b)^2 b^{n-2} + ... + \binom{n}{n-1}(a-b)^{n-1} b^{1} + \binom{n}{n}(a-b)^n b^{0}$
We know that $\binom{n}{0} = 1$ and $(a-b)^0 = 1$ (since a and b are distinct, $a-b \neq 0$). Also, $\binom{n}{n} = 1$ and $b^0 = 1$. So, the expansion becomes:
$a^n = 1 \cdot 1 \cdot b^n + \binom{n}{1}(a-b)b^{n-1} + \binom{n}{2}(a-b)^2 b^{n-2} + ... + \binom{n}{n-1}(a-b)^{n-1} b + 1 \cdot (a-b)^n \cdot 1$
$a^n = b^n + \binom{n}{1}(a-b)b^{n-1} + \binom{n}{2}(a-b)^2 b^{n-2} + ... + (a-b)^n$
Now, subtract $b^n$ from both sides of the equation:
$a^n - b^n = \left(b^n + \binom{n}{1}(a-b)b^{n-1} + \binom{n}{2}(a-b)^2 b^{n-2} + ... + (a-b)^n\right) - b^n$
$a^n - b^n = \binom{n}{1}(a-b)b^{n-1} + \binom{n}{2}(a-b)^2 b^{n-2} + ... + (a-b)^n$
Observe that every term on the right-hand side of the equation contains $(a-b)$ as a factor (since n is a positive integer, $k$ ranges from 1 to n, so $(a-b)^k$ for $k \ge 1$ has a factor of $(a-b)$).
We can factor out $(a-b)$ from the entire expression:
$a^n - b^n = (a-b) \left[ \binom{n}{1}b^{n-1} + \binom{n}{2}(a-b)b^{n-2} + ... + \binom{n}{n-1}(a-b)^{n-2}b + (a-b)^{n-1} \right]$
Let $K = \binom{n}{1}b^{n-1} + \binom{n}{2}(a-b)b^{n-2} + ... + \binom{n}{n-1}(a-b)^{n-2}b + (a-b)^{n-1}$.
Since a and b are integers, $(a-b)$ is an integer. For any positive integer n and $1 \le k \le n$, the binomial coefficients $\binom{n}{k}$ are integers. The terms $(a-b)^{k-1}$ and $b^{n-k}$ (for $k \ge 1$) are also integers because products and powers of integers are integers.
Therefore, the expression inside the square brackets, $K$, which is a sum of products of integers, is also an integer.
We have shown that $a^n - b^n = (a-b) \cdot K$, where $K$ is an integer.
This implies that $a^n - b^n$ is a multiple of $(a-b)$.
Hence, $(a-b)$ is a factor of $a^n - b^n$ for any positive integer $n$.
This completes the proof.
Question 2. Evaluate $(\sqrt{3} + \sqrt{2})^6 - (\sqrt{3} - \sqrt{2})^6$ .
Answer:
Given:
The expression to evaluate is $(\sqrt{3} + \sqrt{2})^6 - (\sqrt{3} - \sqrt{2})^6$.
To Evaluate:
We need to find the numerical value of the given expression.
Solution:
We can use the binomial theorem to expand the terms $(\sqrt{3} + \sqrt{2})^6$ and $(\sqrt{3} - \sqrt{2})^6$.
Recall the binomial expansion formula: $(a+b)^n = \sum\limits_{k=0}^{n} \binom{n}{k} a^{n-k} b^k$ and $(a-b)^n = \sum\limits_{k=0}^{n} \binom{n}{k} a^{n-k} (-b)^k$.
Let $a = \sqrt{3}$ and $b = \sqrt{2}$. The expression is of the form $(a+b)^6 - (a-b)^6$.
Expanding $(a+b)^6$:
$(a+b)^6 = \binom{6}{0}a^6 + \binom{6}{1}a^5b + \binom{6}{2}a^4b^2 + \binom{6}{3}a^3b^3 + \binom{6}{4}a^2b^4 + \binom{6}{5}ab^5 + \binom{6}{6}b^6$
Expanding $(a-b)^6$:
$(a-b)^6 = \binom{6}{0}a^6 - \binom{6}{1}a^5b + \binom{6}{2}a^4b^2 - \binom{6}{3}a^3b^3 + \binom{6}{4}a^2b^4 - \binom{6}{5}ab^5 + \binom{6}{6}b^6$
Now, let's find the difference:
$(a+b)^6 - (a-b)^6 = \left(\binom{6}{0}a^6 + \binom{6}{1}a^5b + ... + \binom{6}{6}b^6\right) - \left(\binom{6}{0}a^6 - \binom{6}{1}a^5b - ... + \binom{6}{6}b^6\right)$
When subtracting, the terms with even powers of $b$ cancel out, and the terms with odd powers of $b$ are doubled:
$(a+b)^n - (a-b)^n = 2\left[\binom{n}{1}a^{n-1}b + \binom{n}{3}a^{n-3}b^3 + \binom{n}{5}a^{n-5}b^5 + ...\right]$ (for even $n$)
... (i)
For $n=6$, $a=\sqrt{3}$, and $b=\sqrt{2}$, the expression becomes:
$(\sqrt{3} + \sqrt{2})^6 - (\sqrt{3} - \sqrt{2})^6 = 2\left[\binom{6}{1}(\sqrt{3})^{6-1}(\sqrt{2})^1 + \binom{6}{3}(\sqrt{3})^{6-3}(\sqrt{2})^3 + \binom{6}{5}(\sqrt{3})^{6-5}(\sqrt{2})^5 \right]$
$= 2\left[\binom{6}{1}(\sqrt{3})^5(\sqrt{2})^1 + \binom{6}{3}(\sqrt{3})^3(\sqrt{2})^3 + \binom{6}{5}(\sqrt{3})^1(\sqrt{2})^5 \right]$
Let's calculate the required binomial coefficients:
$\binom{6}{1} = 6$
$\binom{6}{3} = \frac{6!}{3!(6-3)!} = \frac{6!}{3!3!} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20$
$\binom{6}{5} = \binom{6}{6-5} = \binom{6}{1} = 6$
Now, let's calculate the powers of $\sqrt{3}$ and $\sqrt{2}$:
$(\sqrt{3})^5 = (\sqrt{3})^4 \cdot \sqrt{3} = (3^2) \cdot \sqrt{3} = 9\sqrt{3}$
$(\sqrt{3})^3 = (\sqrt{3})^2 \cdot \sqrt{3} = 3\sqrt{3}$
$(\sqrt{3})^1 = \sqrt{3}$
$(\sqrt{2})^1 = \sqrt{2}$
$(\sqrt{2})^3 = (\sqrt{2})^2 \cdot \sqrt{2} = 2\sqrt{2}$
$(\sqrt{2})^5 = (\sqrt{2})^4 \cdot \sqrt{2} = (2^2) \cdot \sqrt{2} = 4\sqrt{2}$
Substitute these values back into the expression:
$(\sqrt{3} + \sqrt{2})^6 - (\sqrt{3} - \sqrt{2})^6 = 2\left[6(9\sqrt{3})(\sqrt{2}) + 20(3\sqrt{3})(2\sqrt{2}) + 6(\sqrt{3})(4\sqrt{2})\right]$
Simplify each term inside the bracket:
$6(9\sqrt{3})(\sqrt{2}) = 54\sqrt{3 \times 2} = 54\sqrt{6}$
$20(3\sqrt{3})(2\sqrt{2}) = 20(3 \times 2)(\sqrt{3}\sqrt{2}) = 20(6)\sqrt{6} = 120\sqrt{6}$
$6(\sqrt{3})(4\sqrt{2}) = 6(4)(\sqrt{3}\sqrt{2}) = 24\sqrt{6}$
Sum the terms inside the bracket:
$54\sqrt{6} + 120\sqrt{6} + 24\sqrt{6} = (54 + 120 + 24)\sqrt{6} = 198\sqrt{6}$
Now, multiply the sum by 2:
$2 \times 198\sqrt{6} = 396\sqrt{6}$
The value of the expression $(\sqrt{3} + \sqrt{2})^6 - (\sqrt{3} - \sqrt{2})^6$ is $396\sqrt{6}$.
Question 3. Find the value of $(a^2 + \sqrt{a^2 - 1})^4 + (a^2 - \sqrt{a^2 - 1})^4$ .
Answer:
Let the given expression be $E$.
$E = (a^2 + \sqrt{a^2 - 1})^4 + (a^2 - \sqrt{a^2 - 1})^4$
To simplify the expression, let's use substitution.
Let $x = a^2$ and $y = \sqrt{a^2 - 1}$.
Then the expression can be written as:
$E = (x + y)^4 + (x - y)^4$
We use the binomial expansion formula $(m+n)^4 = m^4 + 4m^3n + 6m^2n^2 + 4mn^3 + n^4$.
Expanding $(x+y)^4$:
$(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$
Expanding $(x-y)^4$:
$(x-y)^4 = x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4$
Now, add the two expansions:
$(x+y)^4 + (x-y)^4 = (x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4) + (x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4)$
Combine the like terms. The terms with odd powers of $y$ ($4x^3y$ and $4xy^3$) cancel out:
$(x+y)^4 + (x-y)^4 = x^4 + x^4 + 6x^2y^2 + 6x^2y^2 + y^4 + y^4$
$(x+y)^4 + (x-y)^4 = 2x^4 + 12x^2y^2 + 2y^4$
Factor out $2$ from the expression:
$(x+y)^4 + (x-y)^4 = 2(x^4 + 6x^2y^2 + y^4)$
Now, substitute back $x = a^2$ and $y = \sqrt{a^2 - 1}$ into the simplified expression $2(x^4 + 6x^2y^2 + y^4)$.
First, let's find the required powers of $x$ and $y$ in terms of $a$:
$x = a^2 \implies x^2 = (a^2)^2 = a^4 \implies x^4 = (a^2)^4 = a^8$
$y = \sqrt{a^2 - 1} \implies y^2 = (\sqrt{a^2 - 1})^2 = a^2 - 1$
$y^4 = (y^2)^2 = (a^2 - 1)^2$
Expand $(a^2 - 1)^2$ using the formula $(m-n)^2 = m^2 - 2mn + n^2$:
$(a^2 - 1)^2 = (a^2)^2 - 2(a^2)(1) + 1^2 = a^4 - 2a^2 + 1$
So, $y^4 = a^4 - 2a^2 + 1$.
Substitute these values back into $2(x^4 + 6x^2y^2 + y^4)$:
$E = 2(a^8 + 6(a^4)(a^2 - 1) + (a^4 - 2a^2 + 1))$
Now, simplify the expression inside the parenthesis:
$E = 2(a^8 + 6a^4 \times a^2 - 6a^4 \times 1 + a^4 - 2a^2 + 1)$
$E = 2(a^8 + 6a^6 - 6a^4 + a^4 - 2a^2 + 1)$
Combine the terms with $a^4$:
$E = 2(a^8 + 6a^6 + (-6 + 1)a^4 - 2a^2 + 1)$
$E = 2(a^8 + 6a^6 - 5a^4 - 2a^2 + 1)$
Finally, distribute the $2$ to each term inside the parenthesis:
$E = 2 \times a^8 + 2 \times 6a^6 - 2 \times 5a^4 - 2 \times 2a^2 + 2 \times 1$
$E = 2a^8 + 12a^6 - 10a^4 - 4a^2 + 2$
The value of the expression is $2a^8 + 12a^6 - 10a^4 - 4a^2 + 2$.
Question 4. Find an approximation of (0.99)5 using the first three terms of its expansion.
Answer:
Given:
The expression is $(0.99)^5$.
We need to find an approximation using the first three terms of its expansion.
To Find:
An approximation of $(0.99)^5$ using the first three terms of its binomial expansion.
Solution:
We can write $0.99$ as $1 - 0.01$. So, the expression becomes $(1 - 0.01)^5$.
This is in the form of $(1+x)^n$, where $x = -0.01$ and $n = 5$.
The binomial expansion of $(1+x)^n$ is given by:
$(1+x)^n = ^nC_0 + ^nC_1 x + ^nC_2 x^2 + ^nC_3 x^3 + ... + ^nC_n x^n$
We need to use the first three terms of the expansion, which are $^nC_0$, $^nC_1 x$, and $^nC_2 x^2$.
For $(1 - 0.01)^5$, we have $n=5$ and $x=-0.01$.
The first term is $^5C_0$:
$^5C_0 = 1$
The second term is $^5C_1 x$:
$^5C_1 = 5$
Second term = $^5C_1 \times (-0.01) = 5 \times (-0.01) = -0.05$
The third term is $^5C_2 x^2$:
$^5C_2 = \frac{5!}{2!(5-2)!} = \frac{5!}{2!3!} = \frac{5 \times 4}{2 \times 1} = 10$
Third term = $^5C_2 \times (-0.01)^2 = 10 \times (0.0001) = 0.0010$
To find the approximation, we sum the first three terms:
Approximation $\approx$ First Term + Second Term + Third Term
Approximation $\approx 1 + (-0.05) + 0.0010$
Approximation $\approx 1 - 0.05 + 0.0010$
Approximation $\approx 0.95 + 0.0010$
Approximation $\approx 0.9510$
The approximation of $(0.99)^5$ using the first three terms of its expansion is $0.9510$.
Question 5. Expand using Binomial Theorem $\left(1+ \frac{x}{2} -\frac{2}{x}\right)^{4}\;,\; x\neq0$
Answer:
Given:
The expression to expand is $\left(1+ \frac{x}{2} -\frac{2}{x}\right)^{4}$, where $x \neq 0$.
To Expand:
Expand $\left(1+ \frac{x}{2} -\frac{2}{x}\right)^{4}$ using the Binomial Theorem.
Solution:
We can group the terms inside the parenthesis to form a binomial. Let $y = \frac{x}{2} - \frac{2}{x}$. The expression becomes $(1+y)^4$.
Using the Binomial Theorem for $(1+y)^4$, we have:
$(1+y)^4 = ^4C_0 (1)^4 y^0 + ^4C_1 (1)^3 y^1 + ^4C_2 (1)^2 y^2 + ^4C_3 (1)^1 y^3 + ^4C_4 (1)^0 y^4$
$(1+y)^4 = 1 \cdot 1 \cdot y^0 + 4 \cdot 1 \cdot y^1 + 6 \cdot 1 \cdot y^2 + 4 \cdot 1 \cdot y^3 + 1 \cdot 1 \cdot y^4$
$(1+y)^4 = 1 + 4y + 6y^2 + 4y^3 + y^4$
Now, we substitute $y = \frac{x}{2} - \frac{2}{x}$ back into this expansion and calculate the powers of $y$:
$y = \frac{x}{2} - \frac{2}{x}$
$y^2 = \left(\frac{x}{2} - \frac{2}{x}\right)^2 = \left(\frac{x}{2}\right)^2 - 2\left(\frac{x}{2}\right)\left(\frac{2}{x}\right) + \left(\frac{2}{x}\right)^2 = \frac{x^2}{4} - 2 + \frac{4}{x^2}$
$y^3 = \left(\frac{x}{2} - \frac{2}{x}\right)^3 = \left(\frac{x}{2}\right)^3 - 3\left(\frac{x}{2}\right)^2\left(\frac{2}{x}\right) + 3\left(\frac{x}{2}\right)\left(\frac{2}{x}\right)^2 - \left(\frac{2}{x}\right)^3$
$y^3 = \frac{x^3}{8} - 3\left(\frac{x^2}{4}\right)\left(\frac{2}{x}\right) + 3\left(\frac{x}{2}\right)\left(\frac{4}{x^2}\right) - \frac{8}{x^3}$
$y^3 = \frac{x^3}{8} - \frac{6x^2}{4x} + \frac{12x}{2x^2} - \frac{8}{x^3} = \frac{x^3}{8} - \frac{3x}{2} + \frac{6}{x} - \frac{8}{x^3}$
$y^4 = (y^2)^2 = \left(\frac{x^2}{4} - 2 + \frac{4}{x^2}\right)^2$
$y^4 = \left(\frac{x^2}{4}\right)^2 + (-2)^2 + \left(\frac{4}{x^2}\right)^2 + 2\left(\frac{x^2}{4}\right)(-2) + 2\left(\frac{x^2}{4}\right)\left(\frac{4}{x^2}\right) + 2(-2)\left(\frac{4}{x^2}\right)$
$y^4 = \frac{x^4}{16} + 4 + \frac{16}{x^4} - x^2 + 2 - \frac{16}{x^2} = \frac{x^4}{16} - x^2 - \frac{16}{x^2} + \frac{16}{x^4} + 6$
Now, substitute these expressions for $y, y^2, y^3, y^4$ into the expansion $1 + 4y + 6y^2 + 4y^3 + y^4$:
$1 + 4\left(\frac{x}{2} - \frac{2}{x}\right) + 6\left(\frac{x^2}{4} - 2 + \frac{4}{x^2}\right) + 4\left(\frac{x^3}{8} - \frac{3x}{2} + \frac{6}{x} - \frac{8}{x^3}\right) + \left(\frac{x^4}{16} - x^2 - \frac{16}{x^2} + \frac{16}{x^4} + 6\right)$
Expand each term:
$1 + \left(2x - \frac{8}{x}\right) + \left(\frac{3x^2}{2} - 12 + \frac{24}{x^2}\right) + \left(\frac{x^3}{2} - 6x + \frac{24}{x} - \frac{32}{x^3}\right) + \left(\frac{x^4}{16} - x^2 - \frac{16}{x^2} + \frac{16}{x^4} + 6\right)$
Group and combine like terms (terms with the same power of $x$):
Constant terms: $1 - 12 + 6 = -5$
Terms with $x$: $2x - 6x = -4x$
Terms with $\frac{1}{x}$: $-\frac{8}{x} + \frac{24}{x} = \frac{16}{x}$
Terms with $x^2$: $\frac{3x^2}{2} - x^2 = \frac{3x^2}{2} - \frac{2x^2}{2} = \frac{x^2}{2}$
Terms with $\frac{1}{x^2}$: $\frac{24}{x^2} - \frac{16}{x^2} = \frac{8}{x^2}$
Terms with $x^3$: $\frac{x^3}{2}$
Terms with $\frac{1}{x^3}$: $-\frac{32}{x^3}$
Terms with $x^4$: $\frac{x^4}{16}$
Terms with $\frac{1}{x^4}$: $\frac{16}{x^4}$
Combine all the combined terms:
$\frac{x^4}{16} + \frac{x^3}{2} + \frac{x^2}{2} - 4x - 5 + \frac{16}{x} + \frac{8}{x^2} - \frac{32}{x^3} + \frac{16}{x^4}$
The expansion of $\left(1+ \frac{x}{2} -\frac{2}{x}\right)^{4}$ is $\frac{x^4}{16} + \frac{x^3}{2} + \frac{x^2}{2} - 4x - 5 + \frac{16}{x} + \frac{8}{x^2} - \frac{32}{x^3} + \frac{16}{x^4}$.
Question 6. Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem
Answer:
Given:
The expression is $(3x^2 – 2ax + 3a^2)^3$.
To Expand:
Expand $(3x^2 – 2ax + 3a^2)^3$ using the Binomial Theorem.
Solution:
To use the Binomial Theorem, we group the terms of the trinomial to form a binomial. Let's group the first and third terms together:
$(3x^2 – 2ax + 3a^2)^3 = ((3x^2 + 3a^2) - 2ax)^3$
Let $A = 3x^2 + 3a^2$ and $B = -2ax$. The expression becomes $(A+B)^3$.
Using the Binomial Theorem for $(A+B)^3$:
$(A+B)^3 = ^3C_0 A^3 B^0 + ^3C_1 A^2 B^1 + ^3C_2 A^1 B^2 + ^3C_3 A^0 B^3$
$(A+B)^3 = 1 \cdot A^3 \cdot 1 + 3 \cdot A^2 \cdot B + 3 \cdot A \cdot B^2 + 1 \cdot 1 \cdot B^3$
$(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3$
Now, we substitute $A = 3x^2 + 3a^2$ and $B = -2ax$ back into this expansion and simplify each term.
Term 1: $A^3$
$A^3 = (3x^2 + 3a^2)^3$
This is another binomial expansion of the form $(P+Q)^3$, where $P=3x^2$ and $Q=3a^2$.
$(3x^2 + 3a^2)^3 = ^3C_0 (3x^2)^3 (3a^2)^0 + ^3C_1 (3x^2)^2 (3a^2)^1 + ^3C_2 (3x^2)^1 (3a^2)^2 + ^3C_3 (3x^2)^0 (3a^2)^3$
$= 1 \cdot (27x^6) \cdot 1 + 3 \cdot (9x^4) \cdot (3a^2) + 3 \cdot (3x^2) \cdot (9a^4) + 1 \cdot 1 \cdot (27a^6)$
$= 27x^6 + 81x^4a^2 + 81x^2a^4 + 27a^6$
Term 2: $3A^2B$
$3A^2B = 3 (3x^2 + 3a^2)^2 (-2ax)$
First, expand $(3x^2 + 3a^2)^2$:
$(3x^2 + 3a^2)^2 = (3x^2)^2 + 2(3x^2)(3a^2) + (3a^2)^2 = 9x^4 + 18x^2a^2 + 9a^4$
Now multiply by $3$ and $(-2ax)$:
$3(9x^4 + 18x^2a^2 + 9a^4)(-2ax) = (27x^4 + 54x^2a^2 + 27a^4)(-2ax)$
$= -54ax^5 - 108a^3x^3 - 54a^5x$
Term 3: $3AB^2$
$3AB^2 = 3 (3x^2 + 3a^2) (-2ax)^2$
First, calculate $(-2ax)^2$:
$(-2ax)^2 = (-2)^2 a^2 x^2 = 4a^2x^2$
Now multiply by $3$ and $(3x^2 + 3a^2)$:
$3(3x^2 + 3a^2)(4a^2x^2) = (9x^2 + 9a^2)(4a^2x^2)$
$= 36a^2x^4 + 36a^4x^2$
Term 4: $B^3$
$B^3 = (-2ax)^3$
$= (-2)^3 a^3 x^3 = -8a^3x^3$
Finally, add all the terms together:
$(3x^2 - 2ax + 3a^2)^3 = A^3 + 3A^2B + 3AB^2 + B^3$
$= (27x^6 + 81x^4a^2 + 81x^2a^4 + 27a^6) + (-54ax^5 - 108a^3x^3 - 54a^5x) + (36a^2x^4 + 36a^4x^2) + (-8a^3x^3)$
Combine like terms, grouping by powers of $x$:
$27x^6$
$- 54ax^5$
$+ 81x^4a^2 + 36a^2x^4 = 117a^2x^4$
$- 108a^3x^3 - 8a^3x^3 = -116a^3x^3$
$+ 81x^2a^4 + 36a^4x^2 = 117a^4x^2$
$- 54a^5x$
$+ 27a^6$
So the expansion is:
$27x^6 - 54ax^5 + 117a^2x^4 - 116a^3x^3 + 117a^4x^2 - 54a^5x + 27a^6$